Show Summary Details

Page of

 PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, PLANETARY SCIENCE (planetaryscience.oxfordre.com). (c) Oxford University Press USA, 2016. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 15 October 2018

Chemical Weathering on Venus

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Planetary Science. Please check back later for the full article.

Chemical and phase compositions of Venus’s surface could reflect history of gas- and fluid-rock interactions, recent and past climate changes, and a loss of water from the Earth’s sister planet. The concept of chemical weathering on Venus through gas-solid type reactions has been established in 1960s after the discovery of hot and dense CO2-rich atmosphere inferred from Earth-based and Mariner 2 radio emission data. Initial works suggested carbonation, hydration, and oxidation of exposed igneous rocks and a control (buffering) of atmospheric gases by solid-gas type chemical equilibria in the near-surface lithosphere. Calcite, quartz, wollastonite, amphiboles, and Fe oxides were considered likely secondary minerals. Since the late 1970s, measurements of trace gases in the sub-cloud atmosphere by Pioneer Venus and Venera entry probes and Earth-based infrared spectroscopy doubted the likelihood of hydration and carbonation. The H2O gas content appeared to be low to allow a stable existence of hydrated and a majority of OH-bearing minerals. The concentration of SO2 was too high to allow the stability of calcite and Ca-rich silicates with respect to sulfatization to CaSO4. In 1980s, the supposed ongoing consumption of atmospheric SO2 to sulfates gained support by the detection of an elevated bulk S content at Venera and Vega landing sites. The induced composition of the near-surface atmosphere implied oxidation of ferrous minerals to magnetite and hematite, consistent with the infrared reflectance of surface materials. The likelihood of sulfatization and oxidation has been illustrated in modeling experiments at simulated Venus conditions.

Venus’s surface morphology suggests that hot surface rocks and fines of mainly mafic composition contacted atmospheric gases during several hundreds of millions years since a global volcanic resurfacing. Some exposed materials could have reacted at higher and lower temperatures in a presence of diverse gases at different altitudinal, volcanic, impact, and atmospheric settings. On highly deformed tessera terrains, more ancient rocks of unknown composition could reflect interactions with putative water-rich atmospheres and even aqueous solutions. Salt-, Fe oxide, or silica-rich formations would indicate past aqueous processes. The apparent diversity of affected solids, surface temperatures, pressures, and gas/fluid compositions throughout Venus’s history implies multiple signs of chemical alteration, which remain to be investigated. The current understanding of chemical weathering is limited by the uncertain composition of the deep atmosphere, by the lack of direct data on the phase composition of surface materials, and by the uncertain data on thermodynamics of minerals and their solid solutions. In the preparation for further entry probe and lander missions, rock alteration needs to be investigated through chemical kinetic experiments and calculations of solid-gas(fluid) equilibria to constrain past and present processes.