Show Summary Details

Page of

 PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, PLANETARY SCIENCE (planetaryscience.oxfordre.com). (c) Oxford University Press USA, 2016. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 20 July 2018

Atmospheric Circulation on Venus

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Planetary Science. Please check back later for the full article.

Venus is a slowly rotating planet with a thick atmosphere (~9.2 MPa at the surface). The ground- and satellite-based observations have shown atmospheric superrotation (atmospheric rotation much faster than the solid surface rotation), cloud patterns (e.g., Y-shaped clouds), and polar vortices (polar dipole, cold collar, and fine structures). The Venusian atmospheric circulation, controlled by the planet’s radiative forcing and astronomical parameters, is quite different from the Earth’s one. Since the meteorological data have been accumulated, understanding of the atmospheric circulation has been gradually enriched with the help of theories of geophysical fluid dynamics and meteorology.

Observations and fundamental dynamics of the atmospheric circulation are overviewed in this article. In the cloud layer (49-70 km altitude) far from the surface, planetary-scale brightness variations unique to Venus and thermally induced meridional winds have been observed, along with superrotational flows of >100 m/s. The fully developed superrotation ~60-times faster than the planetary rotation is maintained by meridional circulation and waves. Thermal tides, Rossby wave, Kelvin wave, and gravity wave play important roles in some promising mechanisms for maintaining the fast atmospheric rotation. In the lower atmosphere below the cloud layer, unlike the Earth, the general circulation is still unknown, because there is a lack of the global simultaneous observation. Thus, in addition to the limited observations, development of the atmospheric modeling and understanding of the fluid dynamics help to elucidate the atmospheric circulation system. Recently, general circulation models have simulated the dynamical and thermal structures of the Venus atmosphere. The recent advances and future perspectives are marshaled, along with the outstanding issues.