Show Summary Details

Page of

 PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, PLANETARY SCIENCE ( (c) Oxford University Press USA, 2016. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 24 June 2018

The Interiors of Jupiter and Saturn

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Planetary Science. Please check back later for the full article.

Probing the interiors of the giant planets in our Solar System is not an easy task. This requires a set of observations combined with theoretical models that are used to infer the planetary composition and its depth dependence. The masses of Jupiter and Saturn are 318 and 96 Earth masses, respectively, and since a few decades, we know that they mostly consist of hydrogen and helium.

It is the mass of heavy elements (all elements heavier than helium) that is not well determined, as well as its distribution within the planets. While the heavy elements are not the dominating materials in Jupiter and Saturn, they are the key for our understanding of their formation and evolution histories.

The planetary internal structure is inferred to fit the available observational constraints including the planetary masses, radii, 1-bar temperatures, rotation rates, and gravitational fields. Then, using theoretical equations of states (EOSs) for hydrogen, helium, their mixtures, and heavier elements (typically rocks and/or ices), a structure model is developed. However, there is no unique solution for the planetary structure, and the results depend on the used EOSs and the model assumptions imposed by the modeler.

Standard interior models of Jupiter and Saturn include three main regions: (1) the central region (core) that consists of heavy elements, (2) an inner metallic hydrogen envelope that is helium rich, and (3) an outer molecular hydrogen envelope depleted with helium. The distribution of heavy elements can be either homogenous or discontinuous between the two envelopes.

Major model assumptions that can affect the derived internal structure include the number of layers, the heat transport mechanism within the planet (and its entropy), the nature of the core (compact vs. diluted), and the location/pressure where the envelopes are divided. Alternative structure models assume a less distinct division between the layers and/or a less non-homogenous distribution of the heavy elements. The fact that the behavior of hydrogen at high pressures and temperatures in not perfectly known, and that helium separates from hydrogen at the deep interior add sources of uncertainties to the interior model. Today, with accurate measurements of the gravitational fields of Jupiter and Saturn from the Juno and Cassini missions, structure models can be further constrained. At the same time, these measurements introduce new challenges and open question for planetary modelers.