Show Summary Details

Page of

 PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, PLANETARY SCIENCE (planetaryscience.oxfordre.com). (c) Oxford University Press USA, 2016. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 22 July 2018

Martian Ionospheric Observation and Modeling

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Planetary Science. Please check back later for the full article.

The Martian ionosphere is a plasma embedded within the neutral upper atmosphere of the planet. Its main source is the ionization of the CO2-dominated Martian mesosphere and thermosphere by the energetic EUV solar radiation. The ionosphere of Mars is subject to an important variability induced by changes in its forcing mechanisms (e.g., the UV solar flux) and by variations in the neutral atmosphere (e.g., the presence of global dust storms, atmospheric waves and tides, changes in atmospheric composition, etc.). Its vertical structure is dominated by a maximum in the electron concentration placed at about 120–140 km of altitude, coincident with the peak of the ionization rate. Below, a secondary peak produced by solar X-rays and photoelectron-impact ionization is observed. A sporadic third layer, possibly of meteoric origin, has been also detected below. The most abundant ion in the Martian ionosphere is O2+, although O+ can become more abundant in the upper ionospheric layers. While below about 180–200 km the Martian ionosphere is dominated by photochemical processes, above those altitudes the dynamics of the plasma become more important. The ionosphere is also an important source of escaping particles via processes such as dissociative recombination of ions or ion pickup. So, characterization of the ionosphere provides or can provide information about such disparate systems and processes as the solar radiation getting to the planet, the neutral atmosphere, the meteoric influx, the atmospheric escape to space, or the interaction of the planet with the solar wind.

It is thus not surprising that the interest about this region dates from the beginning of the space era. From the first measurements provided by the Mariner 4 mission in the 1960s to the contemporaneous observations, still ongoing, by the Mars Express and MAVEN orbiters, our current knowledge of this atmospheric region is the consequence of the accumulation of more than 50 years of discontinuous measurements by different space missions. Numerical simulations by computational models able to simulate the processes that shape the ionosphere have also been commonly employed to obtain information about this region, to provide an interpretation of the observations and to fill their gaps. As a result, the Martian ionosphere is today the best known one after that of the Earth. However, there are still areas for which our knowledge is far from being complete. Examples are the details and balance of the mechanisms populating the nightside ionosphere, or a good understanding of the meteoric ionospheric layer and its variability.